
Remote Sensing

Working with Drones and LiDAR Ralph J. Roulette Jr. Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object...

Source: https://en.wikipedia.org/wiki/Rem ote_sensing

Topics

Acronyms Coordinate Systems Datums & Epochs GIS software Computer Hardware Google Earth Canada Lands Survey LiDAR PPK RTK Mapping Point Clouds Drone Safety Mission Planning

Purpose

Provide an introduction to:

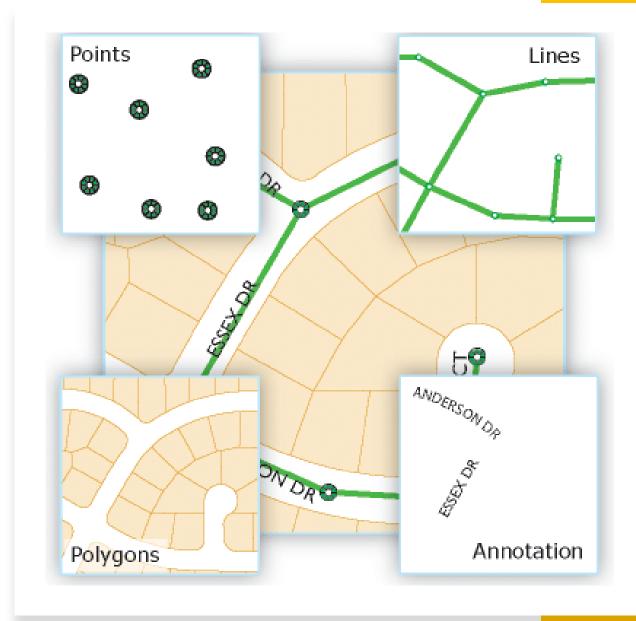
- GIS software
- GIS terms
- GIS concepts
- A basic overview of:
- Lidar
- Point Clouds

For use in:

• Drone Mapping

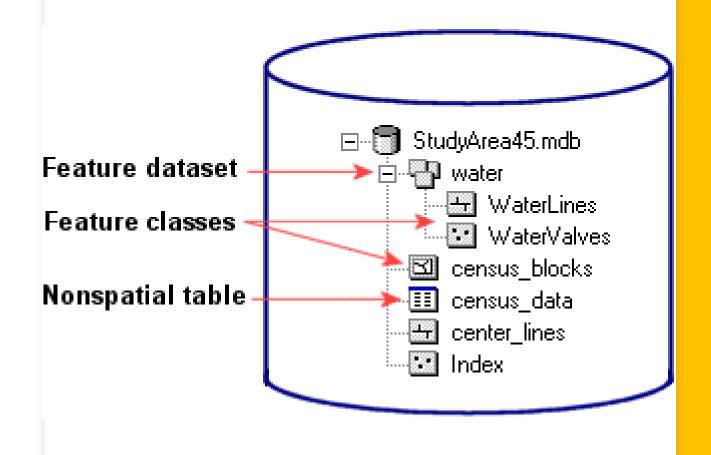
Acronyms

- LiDAR Light Detection and Ranging
- Drones
 - UAV Unmanned Aerial Vehicle
 - RPAS Remote Piloted Aircraft System
 - VTOL Vertical Take-Off/Landing
- RTK Real Time Kinematics
- PPK Post Processed Kinematic
- GSD Ground Sampling Distance
- GCP Ground Control Points


Geomatics

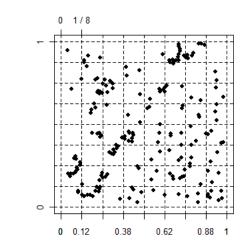
Basics

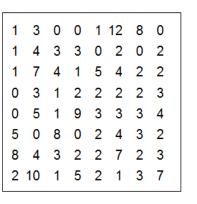
VECTOR vs RASTER

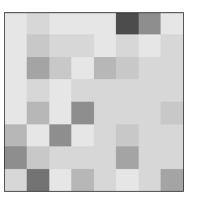

- Feature Class (Vectors)
 - Commonly referred as "shapefiles"
 - Can be points, lines, or polygons
 - Comprised of 3-5 files (only 3 are needed)
 - *.dbf, *.shx, *.prj, *.cpg, *.shp
- KML or KMZ
 - Key Markup Language/Key Markup Zip
 - Used by Google Earth for points, lines and polygons
 - Most drone mission planning software supports kml/kmz file format.
- WKT
 - Well Known Text

Vectors have attributes

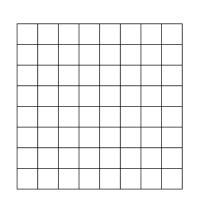
berens_river_buildings — Features Iotal: 495, Filtered: 495, Selected: 0							
/	Z B 2 1		8 📑 🔽 I	👆 🍸 🔳 🐥			
	full_id	osm_id	osm_type	building			
1	w323499763	323499763	way	yes			
2	w323500485	323500485	way	yes			
3	w323501245	323501245	way	yes			
4	w323501530	323501530	way	yes			
5	w323501531	323501531	way	yes			
6	w323501749	323501749	way	yes			
7	w323501919	323501919	way	yes			
8	w323502110	323502110	way	yes			
9	w323502236	323502236	way	yes			
10	w323503384	323503384	way	yes			
11	w323503548	323503548	way	yes			
12	w323503758	323503758	way	yes			
13	w323504335	323504335	way	yes			
14	w323505642	323505642	way	yes			
15	w323505859	323505859	way	yes			
16	w323505860	323505860	way	yes			
17	w323505861	323505861	way	yes			
18	w323505862	323505862	way	yes			
19	w323506056	323506056	way	yes			
20	w323506057	323506057	way	yes			
21	w323506058	323506058	way	yes			
22	w323506059	323506059	way	yes			
23	w323506177	323506177	way	yes			
24	w323506179	323506179	way	yes			
25	w323506180	323506180	way	yes			
26	w323506181	323506181	way	yes			
27	w323506497	323506497	way	yes			
28	w323506499	323506499	way	yes			
	Show All Features						

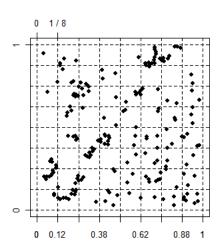

- Geodatabase
 - ESRI proprietary
 - 1 file
 - Can store spatial and nonspatial data
- Geopackage
 - Opensource
 - QGIS
 - Can store spatial and nonspatial data

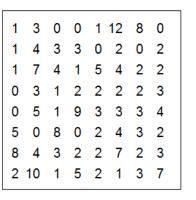


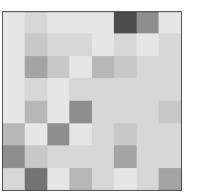

"In computer graphics and digital photography, a raster graphic represents a two-dimensional picture as a rectangular matrix or grid of square pixels, viewable via a computer display, paper, or other display medium."

https://en.wikipedia.org/wiki/Raster_ graphics

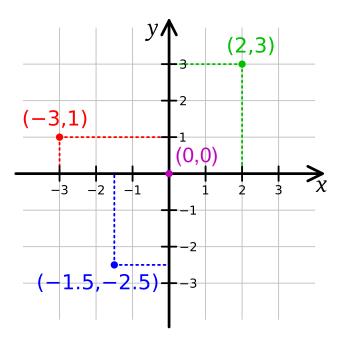


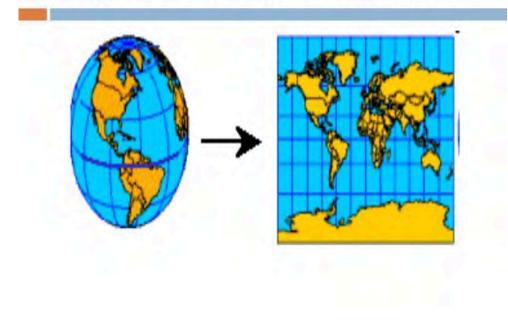

In GIS software, each pixel represents a spatial component. The height and width represents the raster's resolution.


Example: 1x1 metre, 25x25 metre

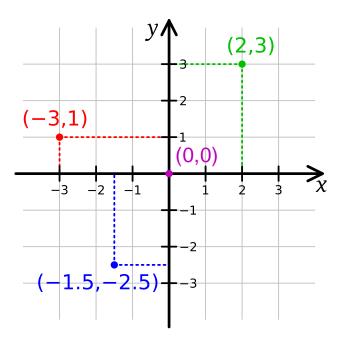

Can represent elevation, population, tree species or soil type/quality. Anything that has a numerical and spatial component.

https://desktop.arcgis.com/en/arcmap/latest/man age-data/raster-and-images/what-is-rasterdata.htm

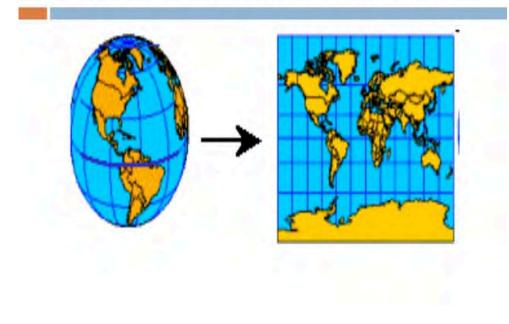




Questions?



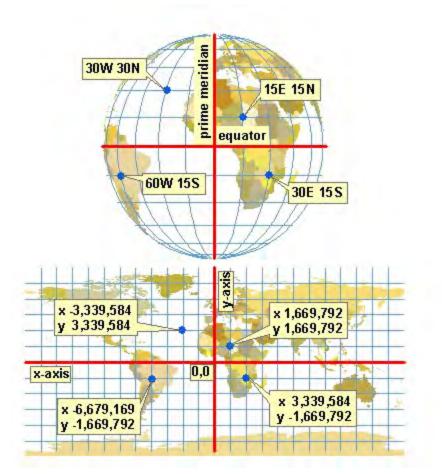
Projected Coordinate Systems



Coordinate Systems

- Cartesian Plane
- Projected Coordinate System (PCS) hint: x,y and z
- Geographic Coordinate System (GCS) hint: latitude and longitude (degrees/minutes/seconds, decimal degrees)

Projected Coordinate Systems



Datums

- A Reference Point
- NAD83 North American Datum of 1983
- Refers to the North American Tectonic Plate

- A GCS defines where the data is located on the earth's surface.
- A PCS tells the data how to draw on a flat surface, like on a paper map or a computer screen.
- Geographic coordinate systems are based on a spheroid and utilize angular units (degrees).
- Projected coordinate systems are based on a plane (the spheroid projected onto a 2D surface) and utilize linear units (feet, meters, etc.).
- Geographic coordinate systems span the entire globe (e.g. latitude / longitude), while projected coordinate systems are localized to minimize visual distortion in a particular region (e.g. Robinson, UTM, State Plane)

- source: <u>https://www.esri.com/arcgis-</u> blog/products/arcgis-pro/mapping/gcs_vs_pcs/

Geographic coordinate system (3D)

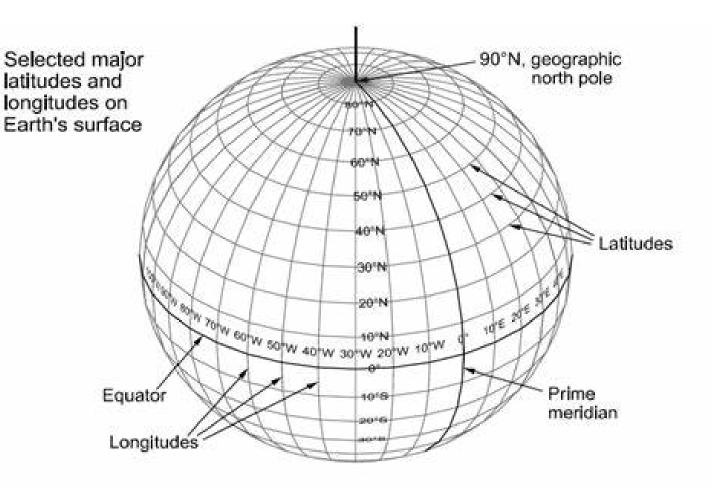
- Coordinates in latitude and longitude

Example : GCS_WGS_1984 (EPSG 4326)

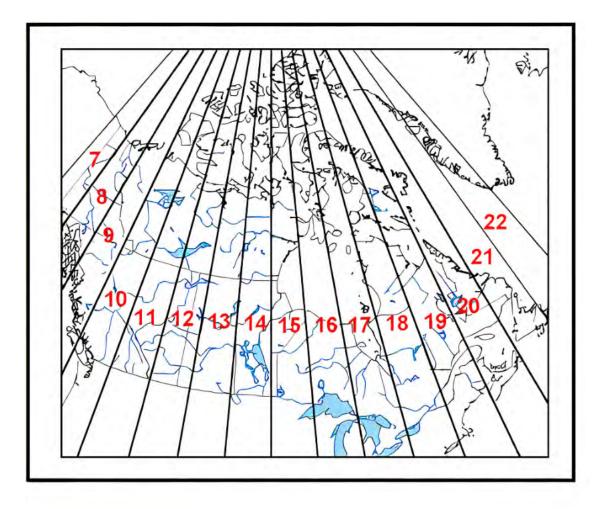
Projected coordinate system (2D)

- Coordinates in meters or feet

- Example : WGS_1984_World_Mercator (EPSG 3395)


Source: <u>https://gis.stackexchange.com/questions/347771/what-projected-or-geographic-coordinate-system-should-i-use-to-calculate-km-dist</u>

Latitude Longitude


Degrees, minutes, and seconds : 40° 26′ 46″ N 79° 58′ 56″ W

Degrees and decimal minutes: 40° 26.767' N 79° 58.933' W

Decimal degrees: +40.446 -79.982

UTM Zones -Canada

NAD83(CSRS) adopted epochs for Canada's provincial geodetic agencies

Canada's Epochs

Province	Epoch
British Columbia (Mainland)	2002
British Columbia (Vancouver Island)	1997
Alberta	2002
Saskatchewan	1997
Manitoba	2010
Ontario	2010
Quebec	1997
New Brunswick	1997
Prince Edward Island	2010
Nova Scotia	2010
Newfoundland and Labrador	2010
Nunavut	2010
Northwest Territories	2010
Yukon	2002

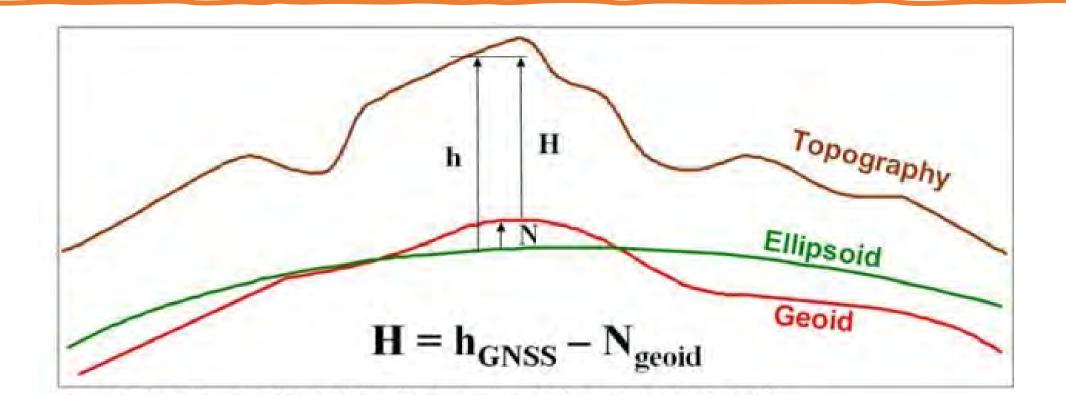


Figure 1: The ellipsoidal height (h), orthometric height (H) and geoid height (N)

Orthometric height (H), often referred as Mean Sea Level Height, can be obtained by subtracting the geoid height (N) from the GNSS ellipsoidal height (h): H = h - N. A geoid height (N) is positive (+) when the geoid is above the ellipsoid and negative (-) when it is below.


Questions?

Geomatics

Software

Software Download Links

• R Studio https://posit.co/download/rstudio-desktop/

• Cloud Compare https://www.cloudcompare.org/release/index.html

QGIS
 <u>https://www.qgis.org/en/site/forusers/download.html</u>

• Google Earth Pro https://www.google.com/earth/versions/#download-pro npare v2.12.4 (Kyiv) [64-bit] - [3D View 1]

Tools Display Plugins 3D Views Help

�≡ ★ Lu Er X J 19 @ @ 27 27 28 ▲ M Sir → ⊕ ≠ ₩ X Lu LU E III + ■ X 28 28 20 m 🗐 🗐 🐨 🖗 AC AC S IS 21 A A A A A A A

SI_triple_return_clean.las (C:/r_las)

Sl_triple_return_clean - Cloud

Cloud Compare

0

-

3540

4112

0

Ň

01 24 0

6

e

4:03] [LoD][pass 2] Level 8: 49149 cells (+9496)

4:03] [LoD][pass 2] Level 9: 184529 cells (+58418)

4:03] [LoD][pass 2] Level 10: 593260 cells (+337065)

4:04] [LoD] Acceleration structure ready for cloud 'sl_triple_return_clean - Cloud' (max level: 13 / mem. = 67.60 Mb / duration: 15.3 s.)

npare v2.12.4 (Kyiv) [64-bit] - [3D View 1]

Tools Display Plugins 3D Views Help

sl_triple_return_clean.las (C:/r_las)

Cloud Compare

0

ni.

41133

N

の語の語の

5

For use when working with point clouds Can create digital surface models, digital terrain models, and digital elevation models Can preform volumetric calculations

e

4:03] [LoD][pass 2] Level 8: 49149 cells (+9496)

4:03] [LoD][pass 2] Level 9: 184529 cells (+58418)

4:03] [LoD][pass 2] Level 10: 593260 cells (+337065)

4:04] [LoD] Acceleration structure ready for cloud 'sl_triple_return_clean - Cloud' (max level: 13 / mem. = 67.60 Mb / duration: 15.3 s.)

()

Get Directions History

Places

anada Lands PROVINCE / TERRITORY

AOI 1 AOI 2 Missing 1 AOI Private Land trustland e_acquisition tle_acquisition

roseau porary Places

+ +

nary Database nnouncements orders and Labels aces hotos pads D Buildings leather allery lore

1

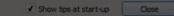
AOI - New Residential Develoment ross Lake Google Earth Pro

Navigate in Google Earth

• Navigate in Google Earth

•

- Navigate with Street View
- Find your house
- * Search for places
- Click and drag the ring to rotate the view.


Navigate in Google Earth

- · Use Move (center of the controls) to move down, up, right or left.
- Use the zoom slider to zoom in or out (+ to zoom in, to zoom out).

· Use Look (top of the controls) to look around from one vantage point.

- Learn more about how to navigate Google Earth
- View layers
- Use tours
- · View locations from the

Google Earth

Date: 12/13/2015 62º33'25.60" N 55º15'10.84" W eve alt 11001.03 km ()

Places

anada Lands PROVINCE / TERRITORY AOI - New Residential Devel ross Lake Missing AOI 1 AOI 2 Missing 1

AOI Private Land trustland

e_acquisition tle_acquisition roseau porary Places

Google Earth Pro

Get Directions History

Great starting point for mapping Can create Area of Interests such as polygons, lines, and points

The KML and KMZ formats are widely supported

4 +

nary Database nnouncements orders and Labels laces hotos bads D Buildings (eather allery lore

Navigate in Google Earth

Navigate in Google Earth

• Send feedback

Start-up Tips

- Navigate with Street View
- Find your house
- * Search for places
- Use the zoom slider to zoom in or out (+ to zoom in, to zoom out).

· Use Look (top of the controls) to look around from one vantage point.

· Use Move (center of the controls) to move down, up, right or left.

Learn more about how to navigate Google Earth

Click and drag the ring to rotate the view.

Navigate in Google Earth

- View layers
- Use tours
- View locations from the

SIC NOAA U.S. Nav Image Landsat / Co Image IBCAO

Carl E.

Google Earth

agery Date: 12/13/2015 62°33'25.60" N 55°15'10.84" W eye alt 11001.03 km ()

RStudio

File	Edit	Code	View	Plots	Session	Build	Debug	Profile	Tools	He
------	------	------	------	-------	---------	-------	-------	---------	-------	----

· Addins ·

🗘 - 🖓 🛫 - 🔡 📃 🤌 Go to file/function 🗢 si guarry.Rmd 🐘 🥥 20230212 Population Statistics by Treat... 👘 🤨 statistics example.R 👘 😂 Population Statistics by Treaty.Rmd Environment History Connections Tutorial Knit on Save 🖤 🧣 🐠 Knit 🔹 🔹 +Run - -----🖅 🚽 🐨 Import Dataset 👻 🕨 144 MiB 🔹 🖉 Source Visual 🗈 Outline 🛛 R 🔹 💼 Global Environment * A Package complot required but is not installed. Install Don't Show Again 1 ----2 title: "Treaty Population Stats" Environment is empty 3 author: "Ralph" 4 date: "2023-02-12" 5 output: html_document 10 This script is meant to compare the First Nation populations by Treaty to non-aboriginal populations. 11 12 - ``{r} 20.10 13 library(sf) 14 library(sp) Files Plots Packages Help Viewer Presentation 15 library(ggplot2) 16 library(dplyr) 17 library(cancensus) whitebox Tool Metadata . Find in Topic 18 library(cowplot) 19 options(scipen = 999) whitebox Tool Metadata 20 #options(cancensus.cache_path = "CensusMapper_8725ele58aed3f776a4c9860cf3cd09a")) 21 #options(cancensus.cache_path = "C:/Users/Ralph/OneDrive ~ Manitoba USKE/Documents - Manitoba USKE/Geomatics/demographic/cache") * home computer
woptions(cancensus.cache_path = "c:/users/user/OneDrive - Manitoba USKE/Documents - Manit USKE/Geomatics/demographic/cache") * work computer
R-Stucio
R whitebox Tool Metadata 25 This vignette provides an introduction to the data sets included in the whitebox package. These data sets contain 26 - ``{r} names, arguments and other metadata for tools available in WhiteboxTools. 27 #rm(list = ls()) 28 #setwd("C:/Users/Ralph/OneDrive - Manitoba U5KE/Documents - Manitoba U5KE/Geomatics/demographic") # home computer 29 What version of Whitebox Tools are these data sets generated from? 30 #setwd("C:/Users/user/OneDrive - Manitoba USKE/Documents - Manitoba USKE/Geomatics/demographic") 31 32 + Current version: 2.3.0 34 - " " [r] Internal data sets and functions defined in the R package correspond to tool names available in the most recent 35 census.data.csd.sf <- get_census(dataset='CA21', regions=list(PR="46"),</pre> version of WhiteboxTools. Data sets are not dynamically generated from your WhiteboxTools installation. 36 vectors=c("v_cA21_4210"), level='csD', geo_format = "sf") Relatively recent versions of WhiteboxTools should be supported backward-compatibly, though any newer functionality will not be usable. 38 39 40 - ## Select columns WhiteboxTools Tool Names and R Function Names 41 R Markdown : The first data set describes tool names in WhiteboxTools and the corresponding exported function in the R Console Terminal Background Jobs package, along with the WhiteboxTools Toolbox name and a brief description. R R.4.2.3 . -/ R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" data("wbttools", package = "whitebox") Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) #> 'data.frame': 545 obs. of 8 variables:

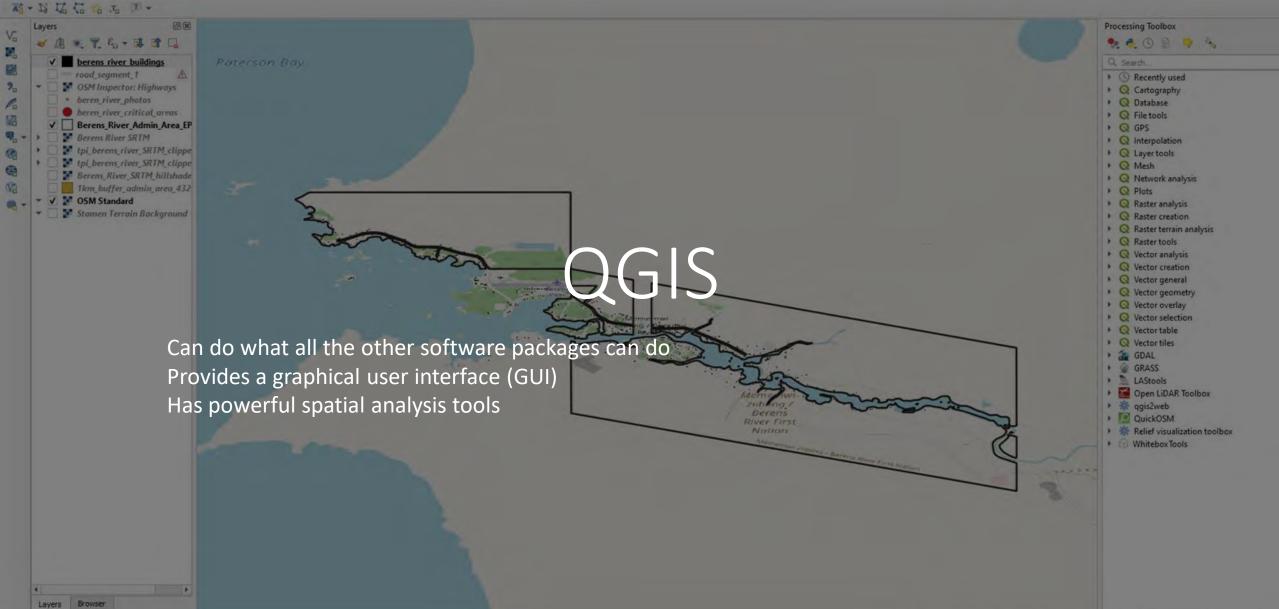
R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions.

\$ tool name : cbr "AbsoluteValue" "AccumulationCurvature" "AdaptiveFilter" "Add"

RStudio

File Ed	lit Code	View	Plots	Session	Build	Debug	Profile	Tools	Hel
---------	----------	------	-------	---------	-------	-------	---------	-------	-----

· Addins ·


🗘 • 🖓 🛫 • 🔡 📃 🤌 Go to file/function 🗢 si guarry.Rmd 🐘 🥥 20230212 Population Statistics by Treat... 👘 🤨 statistics example.R 👘 😂 Population Statistics by Treaty.Rmd Environment History Connections Tutorial Knit on Save 🖤 🧣 🐠 Knit 🔹 🔹 *Run * 5 * 🖅 🔚 🦪 Import Dataset * 🕒 144 MIB * 🧃 Source Visual Outline R • 💼 Global Environment • A Package complot required but is not installed. Install Don't Show Again 1 - ---2 title: "Treaty Population Stats" Environment is empty 3 author: "Ralph" 4 date: "2023-02-12" 5 output: html_document 10 This script is meant to compare the First Nation populations by Treaty to non-aboriginal populations. 11 12 - ``{r} 13 library(sf) 14 library(sp) Files Plots Packages Help Viewer Presentation 15 library(ggplot2) 16 library(dplyr) 17 library(cancensus) whitebox Tool Metadata . Find in Topic 18 library(cowplot) 19 options(scipen = 999) whitebox Tool Metadata 20 #options(cancensus.cache_path = "CensusMapper_8725ele58aed3f776a4c9860cf3cd09a")) 21 #options(cancensus.cache_path = "C:/Users/Ralph/OneDrive - Manitoba USKE/Documents - Manitoba 21 Poperfors(cancers) # home computer USKE/Geomatics/demographic/cache") # home computer 22 #options(cancersus.cache_path = "C:/Users/user/OneDrive - Manitoba USKE/Documents - Mani USKE/Geomatics/demographic/cache") # work computer 23 USKE/Geomatics/demographic/cache") # work computer 24 USKE/Geomatics/demographic/cache") # work computer 25 USKE/Geomatics/demographic/cache") # work computer 26 USKE/Geomatics/demographic/cache") # work computer 27 USKE/Geomatics/demographic/cache") # work computer 28 USKE/Geomatics/demographic/cache") # work computer 29 USKE/Geomatics/demographic/cache") # work computer 29 USKE/Geomatics/demographic/cache") # work computer 20 USKE/Geomatics/demographic/cache whitebox Tool Metadata 25 This vignette provides an introduction to the data sets included in the whitebox package. These data sets contain 26 -27 erm(11st - 1s Great for statistical analysis names, arguments and other metadata for tools available in WhiteboxTools. 29 ²⁹ #setwd("c:/useHas-many GIS-libraries-and-packages-attcs/demographic") What version of Whitebox Tools are these data sets generated from? 31 32 + Current version: 2.3.0 34 - " {r} Internal data sets and functions defined in the R package correspond to tool names available in the most recent 35 census.data.csd.sf <- get_census(dataset='CA21', regions=list(PR="46"),</pre> version of WhiteboxTools. Data sets are not dynamically generated from your WhiteboxTools installation. 36 vectors=c("v_cA21_4210"), level='csD', geo_format = "sf") Relatively recent versions of WhiteboxTools should be supported backward-compatibly, though any newer functionality will not be usable. 38 39 40 - ## Select columns WhiteboxTools Tool Names and R Function Names 41 R Markdown : The first data set describes tool names in WhiteboxTools and the corresponding exported function in the R Console Terminal Background Jobs package, along with the WhiteboxTools Toolbox name and a brief description. R R.4.2.3 . -/ R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" data("wbttools", package = "whitebox") Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit)

#> 'data.frame': 545 obs. of 8 variables:

#> \$ tool name : cbr "AbsoluteValue" "AccumulationCurvature" "AdantiveFilter" "Add"

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions.

Computer Hardware Considerations

Minimum Requirements Fast and easy recommendation Best gaming computer you can afford

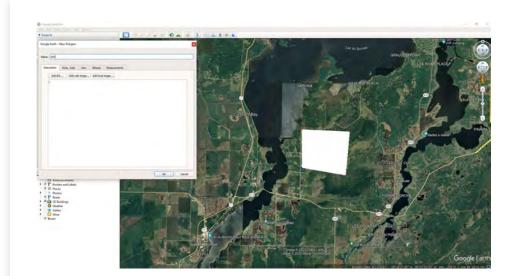
- i7 (or equivalent) or better
- 16 GB RAM (32 GB for point clouds)
- 500 GB SSD
- 1 TB HDD

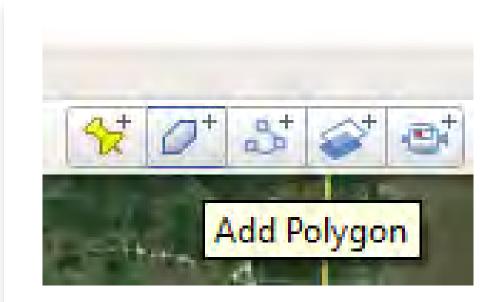
Creating Orthomosaics

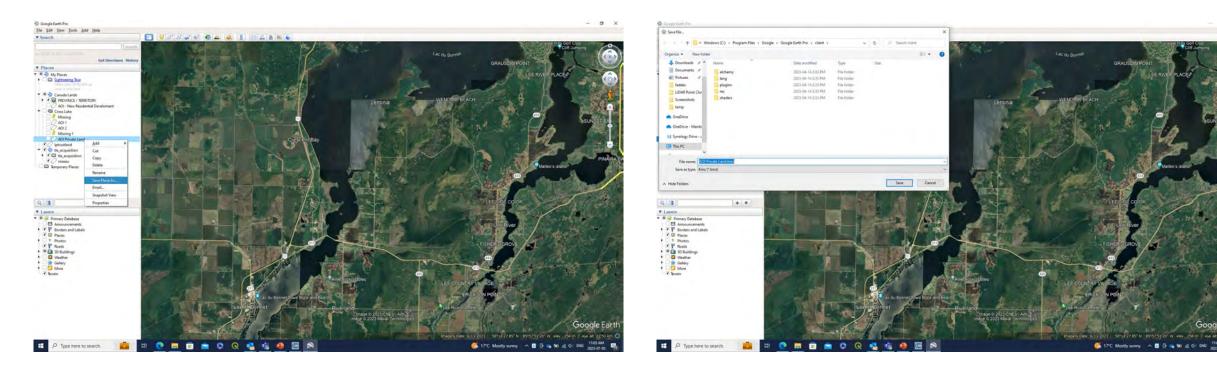
• nVidia Graphics Card (RTX)

Questions?

Geomatics

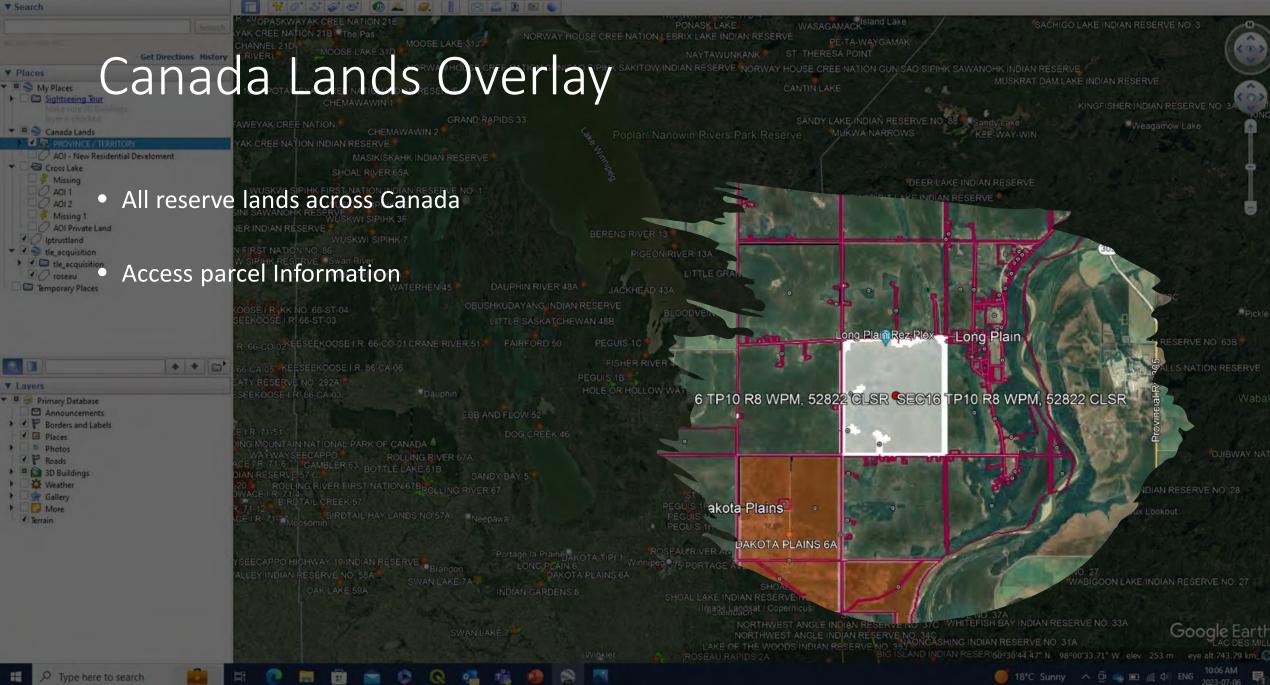

Google Earth Pro

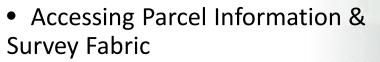



Google Earth Pro

https://www.google.com/earth/versi ons/#download-pro

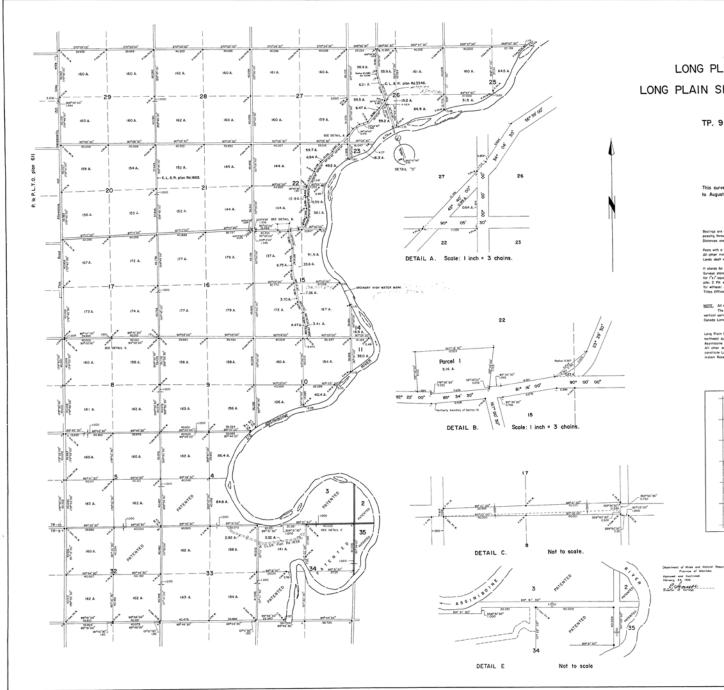
Creating Polygons using Google Earth


Exporting kml/kmz


Google Ear

Google Earth Pro – Canada Lands Overlay

<u>https://natural-</u> <u>resources.canada.ca/maps-tools-and-</u> <u>publications/maps/canada-lands-</u> <u>surveys/tools-applications-canada-</u> <u>lands-surveys/11094</u> File Edit View Tools Add Help



Goo

Survey Fabric

MANITOBA.

Scale: I inch = 20 chains.

This survey was executed during the period from May 20th to August 9th, 1960, by Duncan B. Gillmore, M. L.S.

- LEGEND -

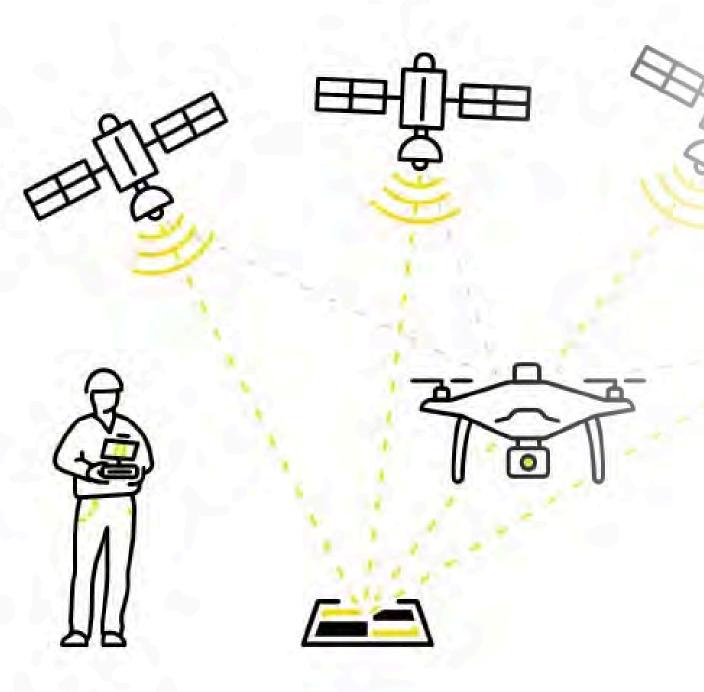
Bearings are astronomic, derived from observation on Polaris, and referred to the meridian possing through the northeast corner of Sec. (6, Tp. 10 = R. 8 = W. P. M. Distances are in chains.

R shorts for Conde Lands Surveys standard post : P. Conc. advals for Gonda Lands Surveys and address of the standard post : B. Stands T. Stands for well posts in the standard post in the standard p

NOTE. All mod diswances are 150 links wide except where otherwise indicated. The onliney high water mark of the Assimilations River was plotted from vertical earliel photographs numbered A15577-40,71.6.76, recorded in Canada Lands Countys Netorics of FB 30167

Long Prain Stans Indian Preserve No. 6A comprises Section 8, morth half Section 5, southeres quarter Section 4, and half poor of each half Section 4 (pring west of the Securoscion River, or in Thermitol (B, Range 8, WP M. All other sections, Social actions and rold ellowances deal with by This plan construct Long Preserve No. 6, or sourcendered londs of Long Plan landsn. Reserve No. 6.

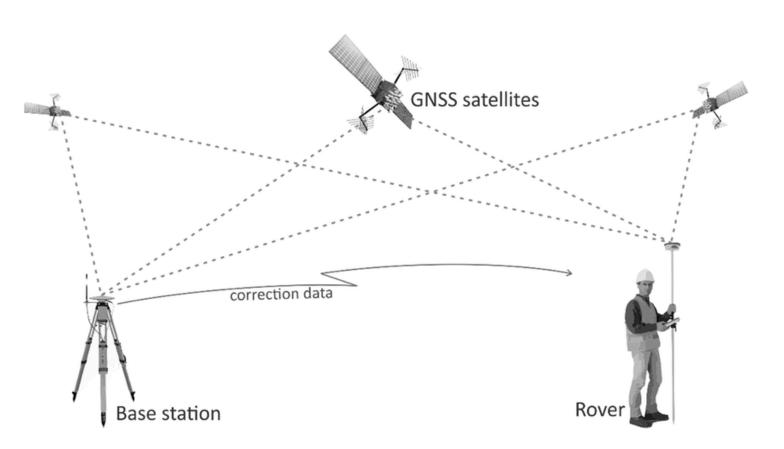
Reaver Toporter of Core-Nor and Toropy-Toporter of Core-Normality (Core-Normality) Toporter of Core-Normality (Core-Land Core-Normality) Department of Core-And Particle Core Cores Co


Field notes for this plan are retained under nas. F.B. 30(87 and 30(87

Questions?

Geomatics

GPS

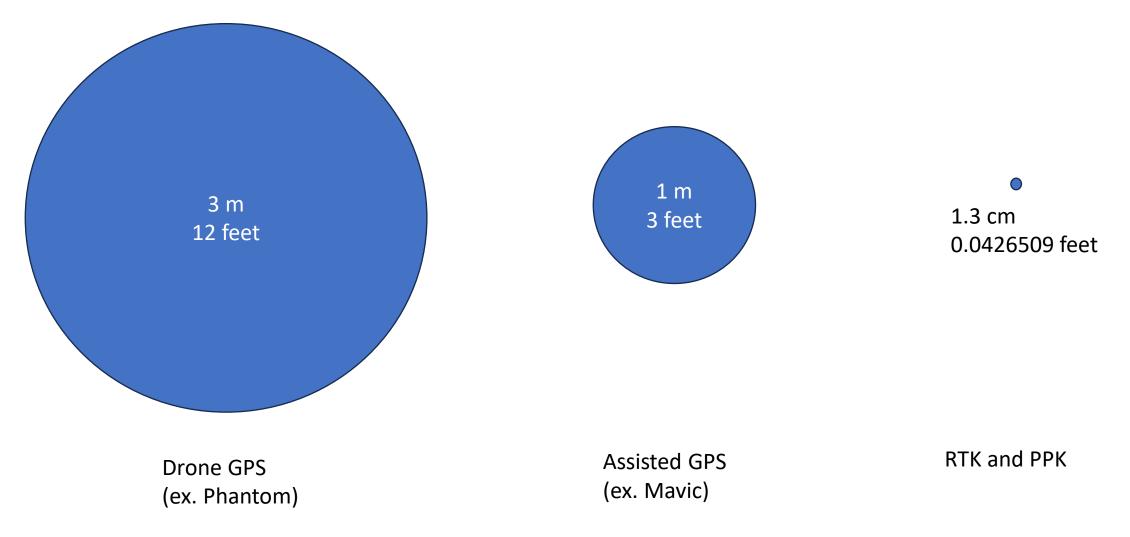

GPS correction technologies

PPK vs RTK

- Difference is when the positional correction takes place
- RTK = Real Time Kinematics (correction takes place during data acquisition)
- PPK = Post Processing Kinematics (correction takes place after data acquisition)

The correction of errors in current satellite navigation (GNSS) systems.

- Set up over a known point
 - If no point is available, set up equipment and leave for +12 hours
 - Send RINEX file to NRCan for post processing and corrections


High Accuracy

Low Precision

"Accuracy is how close a given set of measurements (observations or readings) are to their true value, while precision is how close the measurements are to each other..."

https://en.wikipedia.org/wiki/Accuracy_and_precision

Precision

* Not to scale

CSRS-PPP 3.50.0 (2021-03-10)

sflog001.yyo SEPT

Data Start	Data	End	Duration of Observations
2021-08-18 15:10:00.00	2021-08-18 16:02:00.00		0:52:00
Processing Time			Product Type
18:37:04 UTC 2021/08/18			NRCan Ultra-rapid
Observations	Frequency		Mode
Phase and Code	Double		Static
Elevation Cut-Off	Rejected Epochs	Fixed Ambiguitie	es Estimation Steps
7.5 degrees	0.00 %	89.76 %	30.00 sec
Antenna Model	APC to ARP		ARP to Marker
SEPALTUS_NR3 NONE	L1 = 0.068 m	L2 = 0.062 m	H:0.000m / E:0.000m / N:0.000m
(APC	= antenna phase center;	ARP = antenna referen	ce point)

Estimated Position for sflog001.yyo

	Latitude (+n)	Longitude (+e)	Ell. Height
ITRF14 (2021.6)	50° 3' 48.94658"	-97° 57' 34.24126"	222.642 m
Sigmas(95%)	0.013 m	0.011 m	0.056 m
A priori*	50° 3' 48.94585"	-97° 57' 34.26083"	220.743 m
Estimated – A priori	0.023 m	0.389 m	1.900 m

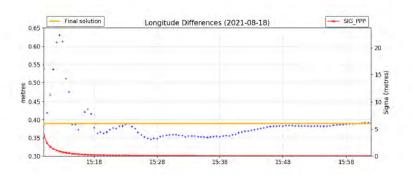
249.417 m (click for height reference information) 95% Error Ellipse (cm) semi-major: 1.7 cm semi-minor: 1.4 cm semi-major azimuth: -14° 57' 41.04"

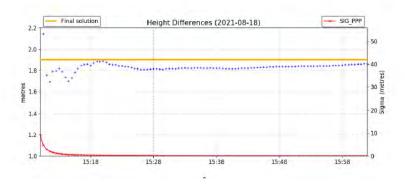
*(Coordinates from RINEX header used as a priori position)

1

0.5

0.0


-0.5


-1.0

UTM (North) Zone 14

5546220.160 m (N) 574469.643 m (E) Scale Factors 0.99966811 (point) 0.99963324 (combined)

- Final solution - SIG PPP Latitude Differences (2021-08-18) 0.10 30 0.05 --25 0.00 -- 20 0 -0.05 -S -15 5 E -0.10 - 10 5 -0.15 -- 5 -0.20 -0.25 15:18 15:28 15:38 15:48 15:58

Questions?

DRONE SAFTY PLANNING

MATRICE 300 RTK SPECIFICATIONS

ITEM	Specification
Dimensions	Unfolded, propellers excluded, 810+670+430 mm (L+W+H) Folded, propellers included, 430+420+430 mm (L+W+H)
Diagonal Wheelbase	895 mm
Weight (with single downward gimbal)	Approx. 3.6 kg (without batteries) Approx. 6.3 kg (with two TB60 batteries)
Max Payload	2.7 kg
Max Takeoff Weight	9kg
Operating Frequency	2.4000-2.4835 GHz 5.725-5.850 GHz
EIRP	2.4000-2.4835 GHz; 29.5 dBm (FCC); 18.5dBm (CE) 18.5 dBm (SRRC); 18.5dBm (M/C) 5.725-5.850 GHz; 28.5 dBm (FCC); 12.5dBm (CE) 28.5 dBm (SRRC)
Hovering Accuracy (P-mode with GPS)	Vertical: ±0.1 m (Vision System enabled) ±0.5 m (GPS enabled) ±0.1 m (RTK enabled) Horizontal: ±0.3 m (Vision System enabled) ±1.5 m (GPS enabled) ±0.1 m (RTK enabled)
RTK Positioning Accuracy	When RTK enabled and fixed: 1 cm+1 ppm (Horizontal) 1.5 cm + 1 ppm (Vertical)
Max Angular Velocity	Pitch: 300*/s, Yaw: 100*/s
Max Pitch Angle	30° (P-mode. Forward Vision System enabled: 25°)
Max Ascent Speed	S mode: 6 m/s P mode: 5 m/s
Max Descent Speed (vertical)	S mode: 5 m/s P mode: 3 m/s
Max Descent Speed (tilt)	S Mode: 7 m/s
Max Speed	S mode: 23 m/s P mode: 17 m/s
Service Celling Above Sea Level	5000 m (with 2110 propellers, takeoff weight \le 7 kg) / 7000 m (with 2195 propellers, takeoff weight \le 7 kg)
Max Wind Resistance	15 m/s

KNOW YOUR DRONE!

- Specifications
- Limitations

- Flight Time
- Wind Resistance
- Temperature
- Weight
- Max Take-Off Weight
- Operating Frequency
- Distance (Effective & Theorical)

DRONE SAFTY

Source: https://trackimo.com/wpcontent/uploads/2016/07/TRACKIMO-FI-Drone-Safety-Concerns-Increasing.jpg

- Purpose of Flight Ec
 - Mapping
 - Aerial Photography
- Site Survey
 - Trees
 - Buildings
 - Hydro lines

- Equipment & Drone
 - Airworthy
 - Propellers
 - Any damage
 - Batteries
 - Equipment
 - Firmware update
- Weather

COMMON SENSE

Manitoba

Drone blocks water bomber from fighting wildfire in Manitoba's Whiteshell Provincial Park

Source: <u>https://www.cbc.ca/news/canada/manitoba/drone-intercepts-fire-</u> <u>1.6108946</u>

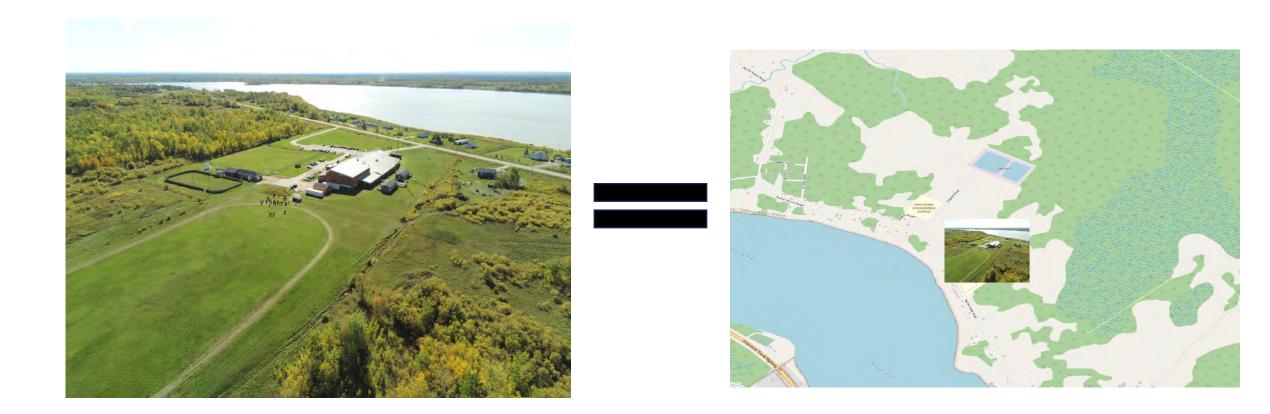
"...The water bomber was flying over the south shore of West Hawk Lake when a drone got in the way of its flight path.


The water bomber had to turn back, leaving the firefighters on the ground in jeopardy."

Questions?

DRONE MISSION PLANNING MAPPING

Drone Aerial Imagery


Drone Aerial Mapping

What it is not

Drone Aerial Mapping

Drone Aerial Mapping

IX-02-03703_005...

IX-02-03703 005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703 005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

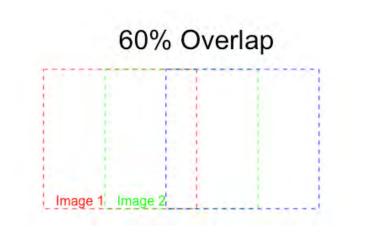
IX-02-03703_005...

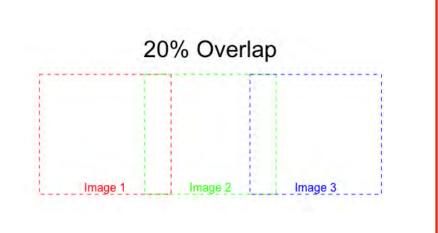
IX-02-03703 005...

IX-02-03703 005...

IX-02-03703 005 ...

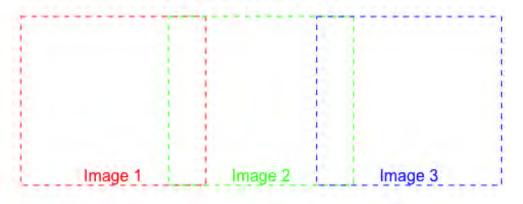
IX-02-03703 005...

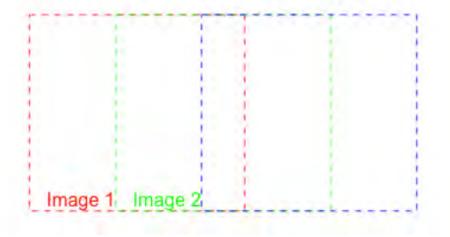



Mission Planning Software

- Drone Deploy (iPhone, Android)
- Pix4D Capture (iPhone, Android)
- eMotion (eBee specific, Windows)
- DJI Pilot (Specialized software for DJI Remotes)

- Software is similiar
- Allows creating an Area of Interest (polygon)
- Set mission height and drone speed
- Calculates flight time
- Calculates ground sampling distance (resolution)


Block #1 🕥 Horizontal Mapping 2.5 cm/px 149:24 480.7 ha Block #1 Name: Aeria X Camera: Plan above: Elevation data - AED Resolution: -2.50 cm/px -Lat. overlap: 60 % -60 % Long. overlap: Reverse flight Perpendicular lines Interlaced flight lines 480.7 ha, 4.81 km² Area: Flight altitude: 118.3 m/AED Photos: 2267 40 m Between photos: Image coverage: 150x100 m Est. flight time: 02:29:24 Est. flight distance: 106170 m 60 m Flight line spacing: 129 Waypoints: Reset progress


_

Blocks

20% Overlap

60% Overlap

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

IX-02-03703_005...

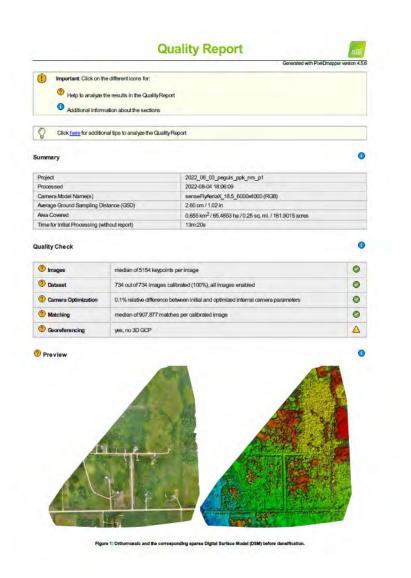
60% Overlap

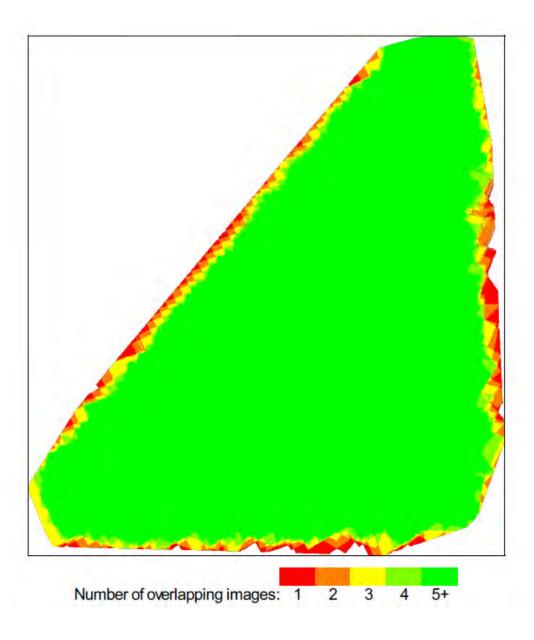
20% Overlap

1		
Image 1	Image 2	Image 3

IX-02-03703_005...

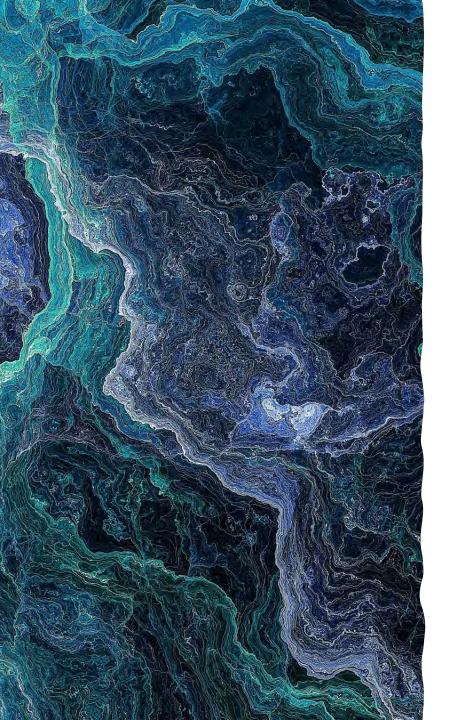
IX-02-03703_005...


IX-02-03703_005...



IX-02-03703_005...

IX-02-03703_005...

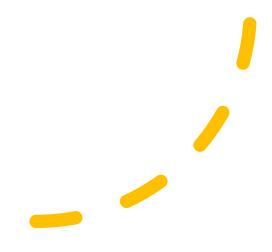


Aerial Imagery Processing Software

- Drone Deploy
- Pix4D
- DJI Terra
- OpenDroneMapping (OSM)

- All software is the same
- Creates orthomosaics
- Creates digital surface models
- Some create point clouds
- Resource intensive

Questions?

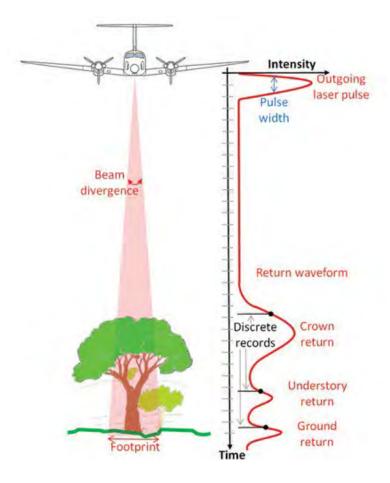


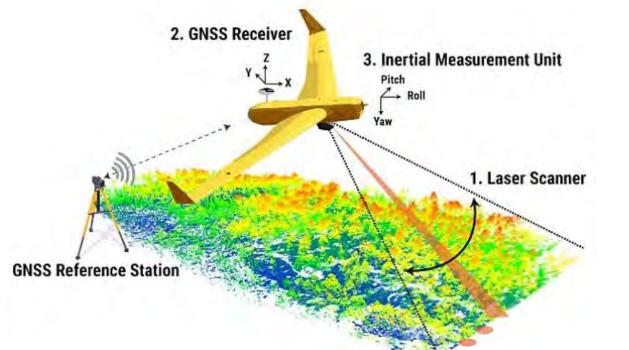
Geomatics

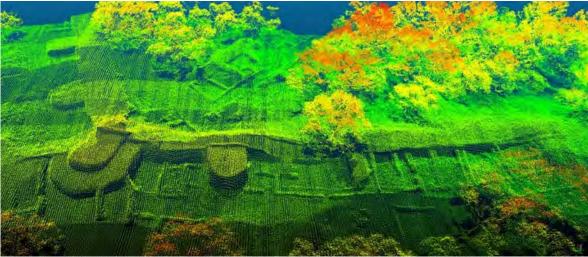
Basics of LiDAR

LiDAR Basics

 A method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver.




• Lidar returns are discrete observations* recorded when a laser pulse is intercepted and reflected by targets. Multiple returns derive from one laser pulse intercepting multiple targets (e.g. a top of a tree, its branches, and the ground).

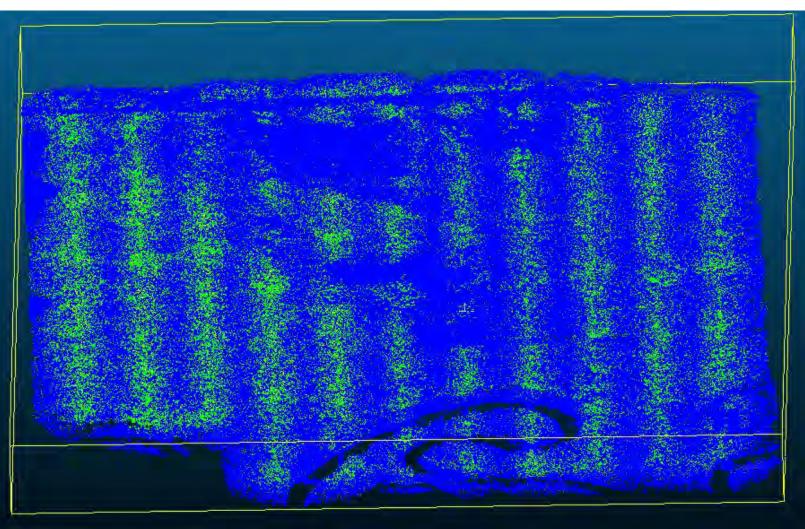

• - Source <u>remote sensing</u>

- What are LiDAR returns? -Geographic Information Systems Stack Exchange


LiDAR Capabilities

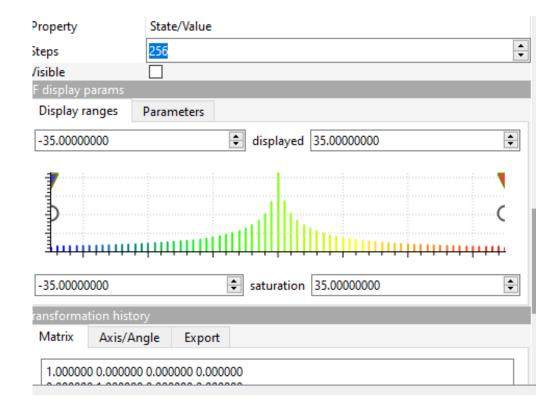
https://medium.com/supplyframe-hardware/lidar-looking-through-a-jungle-canopy-e19fc40e0f88

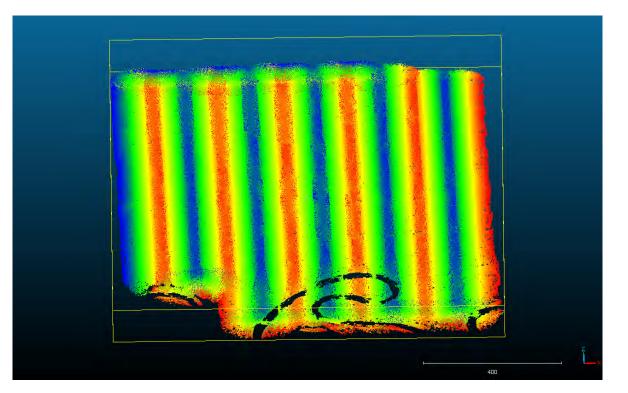
Point Cloud

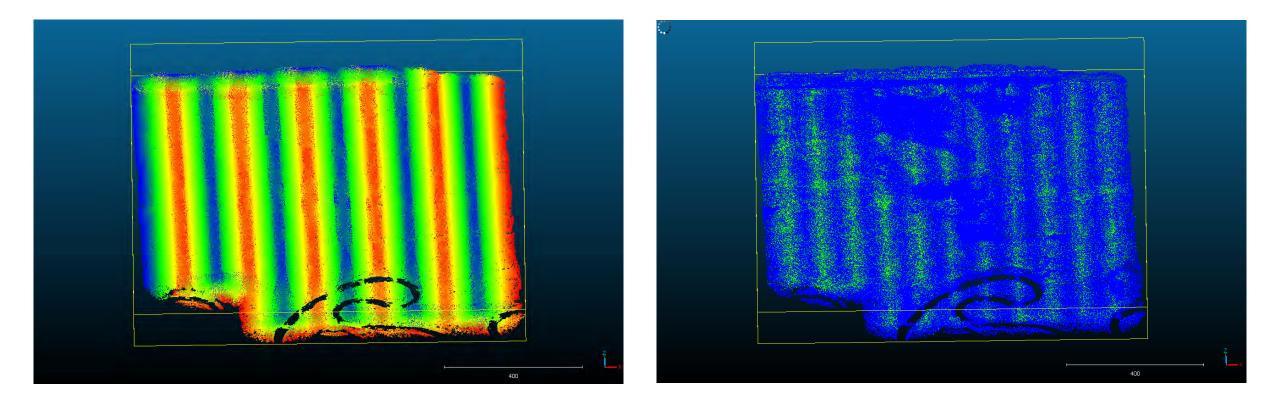

Point cloud

- A **point cloud** is a <u>discrete set</u> of data <u>points</u> in <u>space</u>. The points may represent a <u>3D shape</u> or object. Each point <u>position</u> has its set of <u>Cartesian coordinates</u> (X, Y, Z)
- source: https://en.wikipedia.org/wiki/Point_cloud

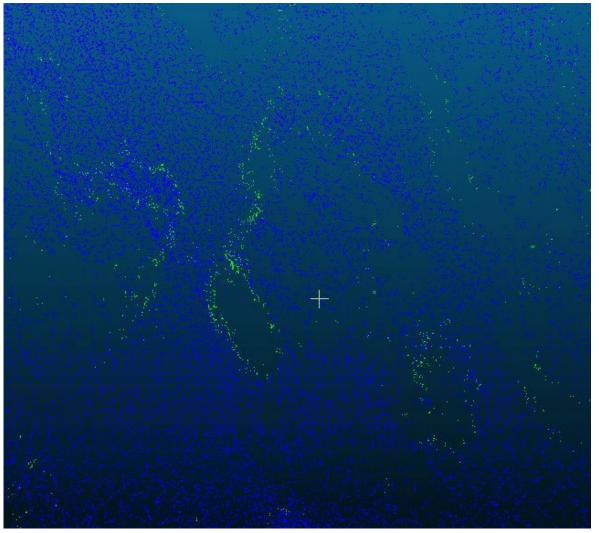
Point Cloud Generation


Relatively fast compared to orthomosaics Classification and Derivatives can take a long time


Roseau River Point Cloud – Number of Returns


1 Return - Blue 2 Returns - Yellow 3 Returns - Red

Roseau River Point Cloud – Scan Angle

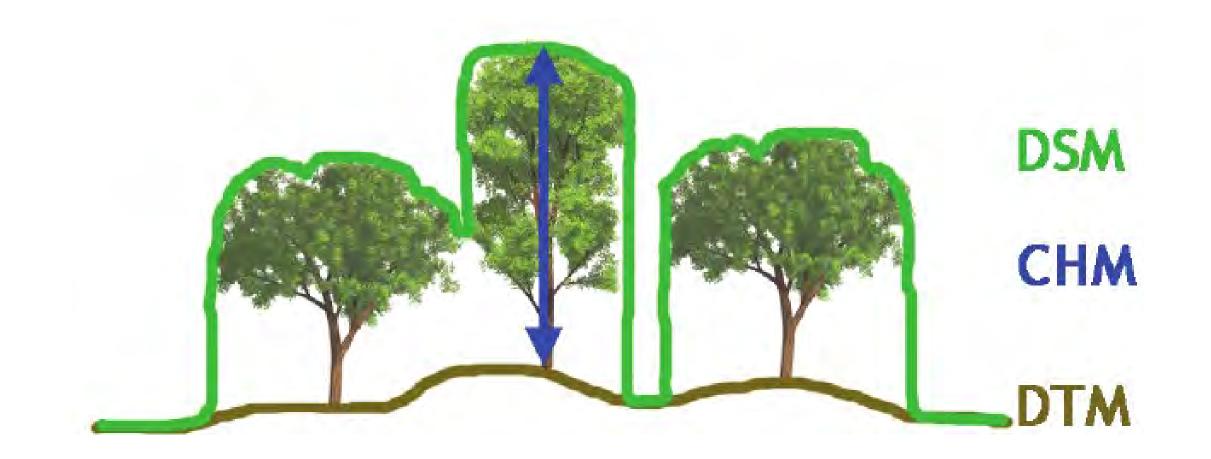


Scan Angle vs Number of Returns

Individual Points

Graphical Point Cloud

CSV Point Cloud


651280.08270264	5451866.06159973	240.20419891	159	179	114	-2.00000	0 1.000000	1.000000	371918984.754501	60.000000
651280.08740234	5451866.14279938	240.22440155	157	184	109	-1.00000	0 1.000000	1.000000	371918990.514877	47.000000
651280.11419678	5451866.21959686	240.24490173	158	183	108	-3.00000	0 1.000000	1.000000	371918979.661239	54.000000
651280.06430054	5451865.93689728	240.20160110	159	204	111	-2.00000	0 1.000000	1.000000	371918984.069930	67.00000
	5451865.93969727									
	5451865.94210052									
	5451866.03849792									
	5451866.00700378									
	5451866.00009918									
	5451865.99990082									
	5451866.00920105									
	5451865.97660065									
	5451865.98619843									
	5451866.02749634									
	5451866.02600098									
	5451866.02649689									
	5451866.02390289									
	5451866.02919769									
	5451866.52619934									
	5451866.49410248									
	5451866.27030182									
	5451866.76959991									
651281.21369934	5451866.20429993	240.19289978	122	159	73	-1.000000	1.000000	1.000000	371918984.765731	68.000000
	5451866.18170166									
651281.07340240	5451865.89980316	240.16610153	150	192	102	-1.00000	0 1.000000	1.000000	371918987.208236	62.000000
	5451865.92780304									
	5451865.94609833									
651281.20909882	5451865.95829773	240.23039825	139	181	94	-2.000000	1.000000	1.000000	371918984.226180	67.000000
	5451865.89849854									
651281.26450348	5451865.97920227	240.22099884	147	183	94	-1.000000	1.000000	1.000000	371918985.903182	71.000000
651281.22460175	5451866.02010345	240.19410141	120	161	80	-2.000000	1.000000	1.000000	371918984.313461	69.000000
651281.40699768	5451865.95770264	240.19349869	141	181	91	-3.000000	1.000000	1.000000	371918975.594955	30.000000
	5451866.03829956									
651281.33959961	5451865.97799683	240.19619949	138	172	90	-2.000000	1.000000	1.000000	371918982.218002	58.000000
651280.95539856	5451866.08370209	240.18240173	144	182	97	-1.000000	1.000000	1.000000	371918986.976791	58.000000
651281.28240204	5451866.02619934	240.18800171	147	189	96	-1.000000	1.000000	1.000000	371918985.647689	64.000000
651281.30229950	5451866.02809906	240.18699844	120	167	84	-1.000000	1.000000	1.000000	371918988.211654	59.000000
651281.29429626	5451866.04769897	240.19069870	131	166	82	-1.000000	1.000000	1.000000	371918988.619247	65.000000
651281.43450165	5451865.98400116	240.21180161	135	181	91	-2.000000	1.000000	1.000000	371918983.761947	59.000000
651281.42269897	5451865.98169708	240.22319992	141	181	96	-1.000000	1.000000	1.000000	371918985.560897	62.000000
651281.41899872	5451866.00820160	240.21219833	129	170	88	-1.000000	1.000000	1.000000	371918985.143050	62.000000
651281.29540253	5451865.85079956	240.24799927	157	194	108	0.000000	1.000000	1.000000	371918995.264144	38.000000
651281.27140045	5451866.05750275	240.19169815	119	157	74	-1.000000	1.000000	1.000000	371918985.653793	69.000000
651281.61660004	5451865.89710236	240.22929962	147	188	98	0.000000	1.000000 1	.000000 3	71918995.462753 3	9.000000
651281.09130096	5451866.17430115	240.16919907	131	167	78	-2.000000	1.000000	1.000000	371918983.507308	68.000000
651281.31379700	5451866.08129883	240.20009811	140	180	87	-2.000000	1.000000	1.000000	371918979.881576	56.000000
651281.61620331	5451865.89869690	240.22939880	134	176	89	-1.000000	1.000000	1.000000	371918984.812240	68.000000
651281.28230286	5451866.09700012	240.19389923	140	180	87	-3.000000	1.000000	1.000000	371918976.696883	37.000000
651281.61569977	5451865.89969635	240.23420151	149	191	99	0.000000	1.000000 1	.000000 3	71918993.743392 3	000000.8
651281.08360291	5451866.20870209	240.15929993	136	173	82	-2.000000	1.000000	1.000000	371918983.188094	62.000000
651281.61599731	5451865.90110016	240.23430069	149	191	99	-1.000000	1.000000	1.000000	371918989.313827	62.000000
651281.08660126	5451866.18229675	240.16739853	139	175	89	-1.000000	1.000000	1.000000	371918986.425155	69.000000
651281.43470001	5451866.06310272	240.20710190	136	177	91	-1.000000	1.000000	1.000000	371918986.326400	62.000000
651280.93129730	5451866.10250092	240.18490036	130	175	75	-2.000000	1.000000	1.000000	371918983.982406	65.000000
	5451866.10079956									
651280.93389893	5451866.10700226	240.19320114	144	182	89	-2.000000	1.000000	1.000000	371918984.423324	64.000000
651281.40129852	5451866.10050201	240.20889862	121	151	70	-1.000000	1.000000	1.000000	371918989.093368	65.000000

LiDAR Derived Products

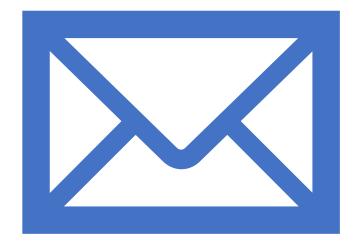
- Digital Surface Model
- Digital Terran Model or "Bare-Earth" Model
- Canopy Height Model
- Digital Elevation Model

DSM CHM DTM

- Digital Surface Model
- Canopy Height Model
- Digital Terran Model

Tree Canopy and Off Ground Points

95


Tree Canopy and Off-Ground Points

Digital Terran Model – "Bare Earth" aladi 4 Digital Surface Model

🌉 kan 🔬 🔬 🖉

 $p(x_{i})$

1 . Sec.

For more information contact:

Ralph Roulette, r.roulette@uske.ca

Or

Shaun Peters, s.peters@uske.ca